equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Na mecânica quântica, equação de Dirac é uma equação de onda relativística proposta por Paul Dirac em 1928 que descreve com sucesso partículas elementares de spin-½, como o elétron. Anteriormente, a equação de Klein-Gordon (uma equação de segunda ordem nas derivadas temporais e espaciais) foi proposta para a mesma função, mas apresentou severos problemas na definição de densidade de probabilidade. A equação de Dirac é uma equação de primeira ordem, o que eliminou este tipo de problema. Além disso, a equação de Dirac introduziu teoricamente o conceito de antipartícula, confirmado experimentalmente pela descoberta em 1932 do pósitron, e mostrou que spin poderia ser deduzido facilmente da equação, ao invés de postulado. Contudo, a equação de Dirac não é perfeitamente compatível com a teoria da relatividade, pois não prevê a criação e destruição de partículas, algo que apenas uma teoria quântica de campos poderia tratar.
A equação propriamente dita é dada por:
- ,
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
na qual m é a massa de repouso do elétron, c é a velocidade da luz, p é o operador momentum linear é a constante de Planck divida por 2π, x e t são as coordenadas de espaço e tempo e ψ(x, t) é uma função de onda com quatro componentes.
A equação da onda é uma equação diferencial parcial linear de segunda ordem importante que descreve a propagação das ondas – tais como ocorrem na física – tais como ondas sonoras, luminosas ou aquáticas. Surge em áreas como a acústica, eletromagnetismo, e dinâmica dos fluidos. Historicamente, o problema de uma corda vibrante como as de um instrumento musical foi estudado por Jean le Rond d'Alembert, Leonhard Euler, Daniel Bernoulli, e Joseph-Louis Lagrange.[1][2][3][4]

Introdução
Equações de onda são exemplos de equações diferenciais parciais hiperbólicas, mas existem muitas variações.
Na sua forma mais simples, a equação de onda diz respeito a uma variável de tempo t, uma ou mais variáveis espaciais x1, x2, …, xn, e uma função escalar u = u (x1, x2, …, xn; t), cujos valores poderiam modelar o deslocamento de uma onda. A equação de onda para u é:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
onde ∇2 é o (espacial) Laplaciano e onde c é uma constante fixa.
Soluções desta equação que são inicialmente zero, fora de alguma região restrita, propagar-se-ão na região a uma velocidade fixa em todas as direções espaciais, assim como ondas físicas a partir de uma perturbação localizada, a constante c é identificada com a velocidade de propagação da onda. Esta equação é linear, da mesma forma que a soma de quaisquer duas soluções é novamente uma solução: na física esta propriedade é chamada princípio da superposição.
A equação sozinha não especifica uma solução, uma solução única é normalmente obtida pela fixação de um problema com outras condições, tais como condições iniciais, que prescrevem o valor e a velocidade da onda. Outra classe importante de problemas especifica as condições de contorno, para as quais as soluções representam ondas estacionárias, ou harmônicos, análogos aos harmônicos de instrumentos musicais.
Para modelos de fenômenos de onda dispersivos, aqueles em que a velocidade de propagação da onda varia com a frequência da onda, a constante c passa a ter a velocidade de fase:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
A equação da onda elástica em três dimensões descreve a propagação de ondas em meio elástico isotrópico homogêneo. A maioria dos materiais sólidos são elásticos, por isso esta equação descreve fenômenos como as ondas sísmicas na Terra e as ondas de ultra-som usados para detectar falhas em materiais. Enquanto linear, esta equação tem uma forma mais complexa do que as equações acima, como deve contabilizar movimento tanto longitudinal e transversal:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
em que: λ e μ são os chamados parâmetros Lamé descrevendo as propriedades elásticas do meio, ρ é a densidade, f é a função fonte (força motriz), e u é o vetor de deslocamento.
Nota-se que nesta equação, tanto a força quanto o deslocamento são grandezas vetorias. Assim, esta equação é conhecida como a equação de onda do vetor.
Variações da equação de onda também são encontrados na mecânica quântica, física de plasma e relatividade geral.
Equação de onda escalar em uma dimensão espacial
Derivação da equação de onda
A lei de Hooke
A equação de onda no caso unidimensional pode ser derivada a partir da lei de Hooke, da seguinte forma: imagine uma matriz de pequenos pesos de massa m interligados com molas sem massa de comprimento h. As molas têm uma constante elástica k:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Aqui u (x) mede a distância a partir do equilíbrio de massa situado em x. As forças exercidas sobre a massa m na posição x + h são as seguintes:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
A equação do movimento para o peso na posição x + h é dada pela igualação dessas duas forças:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
em que a dependência com o tempo de u(x) foi explicitado.
Se o conjunto de pesos consiste em N pesos uniformemente espaçados ao longo do comprimento L = Nh da massa total M = Nm, enquanto a constante da matriz K=k/N, podemos escrever a equação acima como:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Tomando o limite N→ ∞, h → 0 e assumindo a suavidade obtém-se:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
(KL2)/M é o quadrado da velocidade de propagação, neste caso particular.
Solução geral
Para uma equação de onda unidimensional é incomum que sua equação diferencial parcial envolva uma solução geral relativamente simples de ser encontrada. Desse modo, definindo novas variáveis:[5]
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
muda a equação de onda em
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
o que leva a solução geral:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
ou equivalentemente:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Em outras palavras, as soluções da equação de onda 1D são somas de um certo "viajando" função F e uma função G. "viajar" significa que a forma destas funções arbitrárias individuais no que diz respeito a X permanece, no entanto, as funções são deslocadas para a direita( função F) ou esquerda ( função G) a razão ct. Isso foi obtido por Jean le Rond d'Alembert.[6]
Outra forma de chegar a este resultado é notar que a equação de onda pode ser reescrita como:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
e, portanto:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Estas duas últimas equações são chamadas equações de advenção, uma "viajando" para a esquerda e a outra à direita, ambos com velocidade constante c. Por um problema de valor inicial, as funções arbitrárias F e G podem ser determinadas para satisfazer as condições iniciais:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
O resultado é a fórmula D'Alembert:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
No sentido clássico, se f (x)∈ Ck e g(x) ∈ Ck−1 , então u(t, x) ∈ Ck. No entanto, as formas de onda F e G podem também ser funções generalizadas, como por exemplo a função de delta. Nesse caso, a solução pode ser interpretado como um impulso que se desloca para a direita ou para a esquerda.
A equação básica de onda é uma equação diferencial linear e por isso vai aderir ao princípio da sobreposição. Isto significa que o deslocamento de líquido causada por dois ou mais ondas é a soma dos deslocamentos que teriam sido causadas por cada onda individual. Além disso, o comportamento de uma onda pode ser analisada pela divisão da onda em componentes, por exemplo, a transformada de Fourier quebra uma onda em componentes senoidais.
Problema de Valor Inicial e de Fronteira[7]
O Problema de Valor Inicial e de Fronteira (PVIF) a seguir se trata do problema da corda elástica com extremidades fixas e sem a ação de forças externas, tal PVIF consiste no seguinte:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
onde f e g são funções tais que
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
A solução deste PVIF é dada pela soma das soluções dos problemas da corda elástica com deslocamento inicial não-nulo e da corda elástica com velocidade inicial não-nula. Para solucionar ambos os problemas, é utilizado o método da separação de variáveis.
O problema da corda elástica com deslocamento inicial não-nulo consiste em:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Usando o método de separação de variáveis, a solução deste PVIF é
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Enquanto o problema da corda elástica com velocidade inicial não-nula é:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
mais uma vez pelo método da separação de variáveis, temos a solução
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Portanto, temos que a solução do PVIF da corda elástica com extremidades fixas e sem a ação de forças externas
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
com os coeficientes de Fourier calculados por e vistos anteriormente.
Equação de onda escalar em duas dimensões espaciais[8]
Para a dedução da equação da onda bidimensional pode-se pensar no movimento de uma membrana esticada, como a de um tambor, por exemplo. Para tornar a dedução mais simples é preciso admitir certos pressupostos, os quais parecem deslocados da realidade, mas correspondem bem à pequenas deflexões em membranas muito finas:
- A membrana é homogênea, flexível e muito fina, não oferecendo resistência à flexão;
- A membrana é esticada e fixada ao longo do seu contorno no plano xy;
- A tração causada pelo esticamento da membrana é a mesma em todos os pontos e direções, não se alterando durante a movimentação;
- A deflexão da membrana é pequena se comparada ao tamanho da membrana e todos os ângulos de inclinação podem ser considerados pequenos.

Definindo T como a força de tração por unidade de comprimento da membrana e considerando um pedaço pequeno dela, tem-se que as forças que agem sobre ele são tangentes à membrana e tem módulo calculado por e com e indicados na figura ao lado.
Analisando as forças, tem-se que suas componentes horizontais são dadas por uma multiplicação do módulo pelo cosseno do ângulo. Dado que foi pressuposto que os ângulos são muito pequenos, o valor dos cossenos tende à um. A partir disso, tem-se que as componentes horizontais das forças são quase iguais, de modo a se anularem. Por consequência, se considera que a movimentação da membrana na direção horizontal é desprezível.
Já em relação às componentes verticais das forças tem-se que:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Onde, representa a derivada parcial em relação à da função que é solução da equação, e são valores entre e e e são valores entre e
Baseando-se na Segunda Lei de Newton, considerando a massa por unidade de área da membrana e como e como a aceleração:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Dividindo os dois lados da equação por para fins de simplificação e fazendo o limite de e tendendo à zero, chegamos à equação de onda bidimensional, onde
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Ela ainda pode ser reescrita em termos de laplaciano de
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Ou de uma forma mais compacta, tal que:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Podemos usar a teoria tridimensional para resolver este problema se considerarmos u como uma função em três dimensões, que é independente da terceira dimensão. Se
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
em seguida, a solução de fórmula geral tridimensional torna
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
onde α e β são as duas primeiras coordenadas na esfera unitária, e dω é o elemento de área sobre a esfera. Esta integral pode ser reescrita como uma parte integrante ao longo do disco D, com o centro (x, y) e um raio de ct:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
É evidente que a solução de (t, x, y) depende não só dos dados sobre o cone de luz ,onde
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
mas também em dados que são interiores ao cone.
Comentários
Postar um comentário